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Abstract
The response of cells to shear flow is primarily determined by the asymmetry of the external
forces and moments that are sensed by each member of a focal adhesion pair connected by a
contractile stress fiber. In the theory presented here, we suggest a physical model in which each
member of such a pair of focal adhesions is treated as an elastic body subject to both a
myosin-activated contractile force and the shear stress induced by the external flow. The elastic
response of a focal adhesion complex is much faster than the active cellular processes that
determine the size of the associated focal adhesions and the direction of the complex relative to
the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration
which may change because of the cellular activity. Our theory is based on the experimental
observation that focal adhesions modulate their cross-sectional area in order to attain an optimal
shear. Using this assumption, our elastic model shows that such a complex can passively change
its orientation to align parallel to the direction of the flow.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Forces exerted by and on adherent cells are important for
many physiological processes such as wound healing and
tissue formation. Understanding the fundamental response of
biological cells to mechanical stress is therefore an important
challenge. Recent theoretical models [1, 2] predict the
observed orientational response of cells to mechanical stress
applied to the surrounding matrix [3]. The response of cells
to curvature-imposed stress is treated theoretically in [4],
which provides an explanation for the observed behavior of
cells spread on a rigid cylindrical substrate [5, 6]. However,
these models cannot be used to explain the orientational
response of cells plated on a rigid substrate to shear flow.
Many experimental studies of cellular response to shear flow
are motivated by the need to understand the mechanics that
governs the behavior of endothelial cells in the inner surface
of blood vessels. These experiments show that these cells
tend to align their stress fibers parallel to the direction of the
flow [7–10]. In most in vitro experiments, a cell plated on
a flat fixed substrate is subject to a laminar, fully developed,
flow imposed in a uniform direction that is parallel to the basal
surface of the cell. The experimental boundary conditions
are chosen so that the shear imposed by the (Couette) flow

is constant and can be easily controlled by changing the
volumetric flow rate.

Contractile cells are characterized by actin stress fibers in
which tension is induced by myosin II molecular motors [11].
The stress is transmitted to the substrate by protein aggregates
called focal adhesions. The stability, size, shape and dynamics
of focal adhesions depend on the cytoskeletal tension as well
as on externally applied forces; in the absence of force, the
adhesions are no longer stable [12–15].

The active system that consists of a pair of focal adhesions
connected by a contractile stress fiber is here referred to as a
focal adhesion complex or, in short, a complex. The model
presented is based on the experimentally observed [16, 17]
tendency of focal adhesions to attain an optimal shear1. We
take this observation as an assumption that is employed in our
model by constraining the values of the total force per unit
cross-sectional area in each of the two focal adhesions to be
equal. With this, the theory predicts that the free energy of
deformation is minimal when the complex is aligned parallel
to the direction of the flow. The theory also implies that this
passive orientational response would not take place if either the

1 An optimal shear in the sense that the free energy associated with the active
changes in the size of a focal adhesion is minimized.
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contractility of the stress fiber or the appropriate active change
in the focal adhesions size are inhibited.

2. Basic assumptions

In the present work, we model each focal adhesion as an elastic
body of cross-sectional area A. The adhesion height, �, is
the distance between the plane at which the adhesion meets
the substrate and the (parallel) plane at which the adhesion
intersects the stress fiber. Since this distance is small compared
to the characteristic radius of the adhesion, we neglect bending
deformations of the structure and take into account only
shearing due to forces applied to the top of the cell. These
external forces are assumed to act parallel to the basal surface
of the cell. Because we are interested in the response of cells to
shear flow, we take into account the forces that arise from the
shear flow as well as the forces generated by the stress fibers
through myosin-activated contractility.

Each of the focal adhesions included in the pair has one
end attached to a substrate; its other end is connected to
the stress fiber that joins the pair. In our model, we treat
the stress fiber as a fixed contractile force that is exerted on
each focal adhesion. Each focal adhesion is modeled as an
elastic body whose size and shape can be actively adjusted
by the cell in response to both contractile and external forces,
such as flow-induced shear forces. A more realistic model,
proposed in [18] and [19], suggests that the shear along the
basal surface of a single focal adhesion2 is a monotonically
decreasing function of the distance from the edge connected
to the stress fiber. However, for the purpose of investigating
only the average response of a single complex to shear flow
(and not the local response of the material comprising the focal
adhesion), we approximate the shear to be homogeneous and
equal to the mean value of the actual shear profile, i.e. the
resultant force acting on a focal adhesion per unit area of the
focal adhesion’s basal surface. Accordingly, the displacement
of the focal adhesion cross section that is parallel to the
(rigid) planar substrate is taken to be a linear function of z,
where z measures the distance from the basal plane. A three-
dimensional schematic description of the model is shown in
figure 1.

Focal adhesions at the two termini of a stress fiber
are subject to dynamic processes related to their growth,
saturation and decay [19, 20]. Such behavior, together with the
possibility of disassembly and reassembly of focal adhesions
and stress fibers, enable cells to reorient their stress fibers
to a configuration in which the associated free energy of
deformation can be minimal.

The experiments and theory (in the presence of
contractility but not external shear flow) reported in [16]
and [17] suggest that the interfacial area of a focal adhesion
is proportional to the net force exerted on the focal adhesion3.

2 The rat embryo fibroblasts used in the experiments reported in [19] were
under no external forces (such as the forces result from a shear flow) other
than the focal-adhesion–substrate anchoring forces.
3 The results reported in figure 5a of the article [16] show a linear relation
between the applied force and cross-sectional area of a focal adhesion. Similar
results are reported in figure 3H of [17] for cross-sectional areas greater than
1 μm2.

Figure 1. A 3D schematic description of the model. Each focal
adhesion is shown as a deformed elastic body that has an (intrinsic)
cylindrical shape when stress-free. The stress-free configuration of
the focal adhesion complex is shown below a deformed
configuration.

This finding may be interpreted in terms of cellular activity
in which the larger size of a focal adhesion makes it possible
for more stress fibers to integrate and result in a larger force.
However, this interpretation implies that, when the sizes of the
two focal adhesions in a complex are different, the contractile
force may not be constant along a stress fiber. Such variability
of the force along a stress fiber cannot exist if the stress fiber
is in stable mechanical equilibrium in which its tension must
be constant. In contrast, an alternative approach suggests that
a cell regulates its activity to adjust the size of a focal adhesion
in order to maintain a constant shear stress [21]. In the present
theory, we do not try to validate this latter approach, but rather
to use it as a basic postulate that is based on the experimental
observations in [16, 17], and [22].

When a pair of focal adhesions is only subject to a
contractile force, generated by the associated stress fiber, the
magnitude of the resultant force sensed by one focal adhesion
is equal to that sensed by the other member of the complex;
hence, in the absence of external shear, each focal adhesion
is expected to have the same size and cross-sectional area.
In shear flow, however, a different force is applied to each
one of the focal adhesions in a complex; this is because
the additional unidirectional shear force induced by the flow
increases the total shear in the upstream focal adhesion and, at
the same time, partly cancels the total shear in the downstream
focal adhesion. This is because the contractile forces on the
two focal adhesions in a complex are equal in magnitude
and opposite in their direction, while the shear forces on
each focal adhesion have the same direction. In order to
maintain a constant shear stress in the presence of shear
flow (in accord with our basic assumptions discussed in the
previous paragraph), this implies that the focal adhesion on the
upstream side must have a larger area than the focal adhesion
on the downstream side so that the shear, i.e. the ratio of
the magnitude of the resultant force to the cross-sectional area
in each of the focal adhesions, is equal to an optimal value4.
This predicted change in focal adhesion size was confirmed in
the experiments reported in [22]. These results motivated us
to relate the changes in the cross-sectional area of the focal
adhesions in a complex to both the contractile force and the

4 In [16] it was suggested that the optimal shear is 5.5 nN μm−2.
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Figure 2. A schematic illustration of a focal adhesion complex. In the upper figure the system is shown from a top view. Each of the focal
adhesions is subject to a pure shearing deformation and its elastic response can be thought to be that of a linear spring with a zero stress-free
length that is anchored at one end. In its other end the spring is subject to a shear force, si , resulting from the flow and a contractile force, ρ.
The springs that model the resistance of the focal adhesions to shear are free to rotate and hence, in their equilibrium configuration, they are
aligned with the direction of the resultant of the two forces acting on each of them. The variables u1 and u2 are the displacements of the upper
ends of the focal adhesions; the dimensionless displacements are defined so that ηi = ui/d . Because each of the focal adhesions in a complex
is subject to a myosin-activated contractile force that acts along the axis of the associated stress fiber, the two focal adhesions are coupled. The
forces, ρ, s1 and s2, and the displacements, u1 and u2, are assumed to lie in the plane, z = �, that is parallel to the x–y plane. A front view of
the same configuration of the deformed focal adhesion complex is shown in the bottom figure. When u1 = u2 = 0 each adhesion will appear
as a single circle in a top view.

shear force, and to postulate that the cellular activity not only
determines the contractile forces generated by the stress fibers
but also changes the cross-sectional area in such a way that,
even in the presence of imposed shear, the shear-stress values
on each pair of adhesions in a complex are equal.

To account for the effect of the shear flow we assume that
the flow results in a homogeneous shear in the cell. The stress
field due to such a deformation results in a (shear) force on each
focal adhesion that is equal to the (constant) shear, τ , generated
by the flow times the (average) cross-sectional area of the focal
adhesion. We note that, since a focal adhesion is linked to the
substrate on its bottom and to a stress fiber on its top [19], this
assumption is reasonable and does not introduce a significant
error.

3. Kinematics and theory

We consider a cell plated on a planar substrate that is in the
x–y plane of a fixed coordinate system. The direction, n, of
the shear flow makes an angle Θ with respect to the positive
x direction as shown in figure 2. The heights of the two focal
adhesions comprising a complex are assumed, for simplicity, to
be fixed and equal to �. We thus only consider displacements
in the direction parallel to the plane of the substrate. When a
uniform shear is applied, the magnitude of the displacement, u,
of a material point in a focal adhesion depends linearly on the
distance z from the basal surface:

u = αz, (1)

where the variable α = ∂u/∂z is the total strain in each
focal adhesion. Hence, to fully determine the deformation

of a focal adhesion it is sufficient to describe the magnitude
of the displacement (in a plane normal to the z axis), u, at
z = � and the direction of this displacement. We here describe
the configuration of each member of a pair of focal adhesions
by the dimensionless quantity ηi = ui/d characterizing the
magnitude of the maximum displacement5 and the rotation
angle, θi , that determines the direction of the displacement as
shown in figure 2. The subscript i takes the values 1 or 2, where
1 indicates the focal adhesion that is located in the upstream
side of the cell, i.e. the side that is first reached by a moving
fluid particle of the induced flow, and 2 indicates the focal
adhesion that is in the downstream side. The dimensionless
variables ηi = ui/d prescribe the maximum displacement of
each of the two focal adhesions, and from equation (1), are
equal to αi�/d . The distance d between the basal centers of
the two focal adhesions and the angle Θ that the direction of
the flow, n, makes with the x axis are, for now, taken to be
parameters that are fixed in any given experiment. The pair
of focal adhesions is subject to a shear stress of magnitude τ

exerted on the two termini of the associated stress fiber, and to
a contractile force, ρ, exerted by the stress fiber. The distance,
L, between the two termini is given by6

L = |(x2 + u2) − (x1 + u1)|. (2)

The value of L when the complex is in mechanical equilibrium
is smaller than d due to the contractile nature of the stress fiber.
The points x1 and x2 are the barycenters of each of the focal

5 In other words, ηi is the horizontal displacement of the upper end of a focal
adhesion in units of the length d between the two focal adhesions.
6 Notice that coordinate system was chosen so that L is independent of Θ .
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adhesion’s basal surface and are chosen so that x1 coincides
with the origin and

x2 = de1. (3)

The displacement vectors u1 and u2 are given by

ui = d(ηi cos(θi)e1 + ηi sin(θi)e2), (4)

where e1 and e2 are the unit vectors that denote the positive
directions of the x axis and y axis, and the dimensionless
displacements are defined so that ηi = ui/d . In the absence
of shear flow and stress-fiber contractility, η1 = η2= 0 and
L = d .

In the next section we show how the equations of
mechanical equilibrium can be derived from the first variation
of the deformation free energy with respect to η1, θ1, η2

and θ2 in which the contributions of the shear forces and the
contractile forces are taken into account. Before showing this
variational approach (that is essential primarily for a simple
determination of the angle Θ for which the system is in a
globally stable equilibrium) we now give a simpler derivation
of the equilibrium configuration of a general complex. We
take the angle Θ and the forces illustrated as vectors in the
complex shown in figure 2 to be fixed. We associate each
of the focal adhesions with a linear spring of zero stress-
free length and a spring constant, Wi , with i = 1, 2 for the
upstream and downstream focal adhesions, respectively. Each
linear spring is anchored at one end to the rigid substrate and
is subject to a shear-flow-induced force si and a contractile
force of magnitude ρ as shown in figure 2. When the direction
and magnitude of the forces are known, the extension of the
spring times the spring constant is equal to the magnitude of
the resultant force, and its equilibrium orientation is that of
the resultant force, i.e. the vectorial summation of the two
external forces. The two springs are coupled in the sense
that the forces of contractility on each of them act in opposite
directions and lie in the axial line of the stress fiber generating
them. However, because the average displacements of the
focal adhesions are significantly smaller than the length of
the associated stress fiber and are of the order of magnitude
of the height of the focal adhesion [20], we assume that the
stress fiber remains parallel to the x axis in the deformed
configuration. Thus, the balance of forces and moments on
each focal adhesion can be expressed as follows:

(s1 − ρ) · (cos(θ1)e1 + sin(θ1)e2) = W1u1, (5a)

u1 × (s1 − ρ) = 0, (5b)

(s2 + ρ) · (cos(θ2)e1 + sin(θ2)e2) = W2u2, (5c)

u2 × (s2 + ρ) = 0. (5d)

Equations (5) can be easily written in the form of four
independent equations for the four equilibrium values of the
kinematical variables u1, θ1, u2 and θ2. When the direction
of the deformed stress fiber is taken to be parallel to the x
axis, i.e. when the contractile force ρ is equal to ρe1 (with
ρ the known magnitude of the myosin-activated contractile
force) that system is also uncoupled and can be easily solved,
as shown in the next section.

4. Free energy and mechanical equilibrium

To express the energy associated with a focal adhesion complex
under shear we use the standard expression7 for the elastic
energy as a function of the strain and external stress [23]:

F = 1
2 W1d2η2

1 + 1
2 W2d2η2

2 − τ A1η1d cos(θ1 − Θ)

− τ A2η2d cos(θ2 − Θ) − ρ(L − d), (6)

where τ is the shear induced by the flow and Ai , i = 1, 2,
is the cross-sectional area of each of the focal adhesions
that can vary, depending on cell activity. Accordingly, the
shear-flow-induced forces (see figure 2) are taken to be si =
τ Ai(cos Θe1 + sin Θe2). The energy in (6) takes into account
the shear by including the deformation energy given by the
product of the shear force and the displacement of the focal
adhesion, ηi d . It is important to note that, because the stress
fibers are contractile, the deformed length L is smaller than
d . This means that, according to the form of (6), ρ must be
negative so that the energy F is decreased as L−d is decreased.
The quantities W1 and W2 are related to Young’s modulus, E ,
and the area of each adhesion by [24, 25]

Wi = Ai E

2(1 + ν)�
, (7)

where ν is the Poisson ratio of the focal adhesions.
Because the heights of the focal adhesions in a cell are

typically three orders of magnitude smaller than the lateral size
of a typical stress fiber [20], we further make use of the fact
that �/d and hence ηi are significantly smaller than 1. Thus,
neglecting terms of higher order, the normalized distance L/d
can be approximated from equation (2) as follows:

L/d = 1 − cos(θ1)η1 + cos(θ2)η2. (8)

This approximation is identical to the assumption, made in
the previous section, that the stress fiber in the deformed
configuration remains parallel to the x axis. Hence, for �/d ,
ηi � 1, we can express the modified energy F in (6)
of the deformed focal adhesion complex in the following
dimensionless form:

F̂ = 1
2 (1 − ω)η2

1 + 1
2ωη2

2 − λ(1 − ω)η1 cos(θ1 − Θ)

− λωη2 cos(θ2 − Θ) − ρ̂(cos(θ2)η2 − cos(θ1)η1), (9)

where the dimensionless variables are defined as follows:

F̂ = F

(W1 + W2)d2
, (10)

ω = A2

A1 + A2
, λ = 2�(1 + ν)τ

Ed
,

ρ̂ = ρ

(W1 + W2)d
.

(11)

Experiments that measure the dynamics of the cross-
sectional area of focal adhesion [22] suggest that the total
area of both adhesions, A1 + A2, is conserved. In the
next section we use our basic assumption (based on the

7 The parameter ρ can be thought of as a Lagrange multiplier associated with
a constraint on the value of L − d.
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experiments of references [16, 17] and [22]) that the size of
each of the focal adhesions in a complex is actively changed
in order to achieve an equal value of the shear stress in the
upstream and downstream focal adhesions, in order to find
the preferred orientation of the complex. We show that under
this assumption F̂ has a global minimum when the adhesion
complex is parallel to the shear flow direction, Θ = 0. This is
true for all values of the contractile force and the shear imposed
by the flow, characterized by ρ̂ and λ, respectively.

We first solve for the equilibrium configuration of a
complex for given values of the quantities Θ and ω that vary
much more slowly than the degrees of freedom η1, θ1, η2 and
θ2 characterizing the elastic response; those variables reach
mechanical equilibrium quickly. We therefore minimize the
deformation energy with respect to variations in η1, θ1, η2 and
θ2. The first variation of F̂ with respect to these variables yields
the following equilibrium equations that are equivalent to the
equations (5)

Fη1 = −(1 − ω)λ cos(Θ − θ1) + ρ̂ cos(θ1) + (1 − ω)η1,

(12a)

Mθ1 = −((1 − ω)λ sin(Θ − θ1) + ρ̂ sin(θ1))η1, (12b)

Fη2 = −ωλ cos(Θ − θ2) − ρ̂ cos(θ2) + ωη2, (12c)

Mθ2 = −(ωλ sin(Θ − θ2) − ρ̂ sin(θ2))η2. (12d)

The quantities Fηi and Mθi , i = 1, 2, represent the component
of the total force along the direction of ui and net component
along the z axis of the torque8 exerted on each of the focal
adhesions by the resultant force. Clearly, such force and
moment components must vanish if the system can reach
mechanical equilibrium. We have confirmed numerically that
the following stable solution of the system (12) is indeed
the global minimum of the deformation energy (with the
approximations mentioned above):

η1 = 1

1 − ω

√
(1 − ω)2λ2 + ρ̂2 − 2(1 − ω)λρ̂ cos(Θ),

(13a)

θ1 = tan−1

(
sin(Θ)

cos(Θ) − ρ̂/(λ(1 − ω))

)
, (13b)

η2 = 1

ω

√
ω2λ2 + ρ̂2 + 2ωλρ̂ cos(Θ), (13c)

θ2 = tan−1

(
sin(Θ)

cos(Θ) + ρ̂/(ωλ)

)
. (13d)

The (normalized) forces originating from the contractility
(ρ̂ < 0), and from the imposed shear flow, characterized by
(1 − ω)λ for the upstream and by ωλ for the downstream
focal adhesion, are, respectively, parallel to the vectors e1 and
cos Θe1+sin Θe2. The (normalized) magnitude of the resultant
force exerted on each of the focal adhesions by the shear flow
and by the contractility of the stress fibers, i.e. the norm of the
vectorial summation of the external forces acting on it, is equal
to

√
(1 − ω)2λ2 + ρ̂2 − 2(1 − ω)λρ̂ cos(Θ) for the upstream

and
√

ω2λ2 + ρ̂2 + 2ωλρ̂ cos(Θ) for the downstream focal
adhesion. According to the basic assumption described above,

8 When the system is not in equilibrium the resultant force may not be aligned
with the displacement ui .

the cross-sectional area of a focal adhesion is actively changed
in order to maintain an optimal value of the effective shear.
In terms of our model, an appropriate change in the variable
ω (related to the relative areas) would represent this assumed
active adjustment of the focal adhesion cross-sectional area as
a function of the magnitude of the resultant force exerted on
each focal adhesion. The condition of equal shear stresses is
therefore given by equating the ratio of the force to the area for
each of the adhesions. The expressions for the forces written
above show that, when a stress fiber in a complex is oriented
parallel to the shear flow, i.e. when Θ = 0, the contractile
force exerted on the focal adhesion on the upstream side adds to
the force induced by the shear flow, while, for the downstream
focal adhesion, the contractile force, at least partly, cancels the
shear force since, on that side, the two forces act in opposite
directions. The additivity of the contractile and shear forces on
the upstream adhesion thus results in an increase in the size of
the focal adhesion; on the downstream side, the net force on
the adhesion is reduced (since the contractile and shear forces
have opposite signs). This results in a reduction of the area
of the adhesion on that side. The timescale of the cellular
active processes that readjust the size of focal adhesion is of
the order of 10 min (see, e.g., [17]). This is several orders of
magnitude longer than the timescale for the elastic response
of the complex (η1, θ1, η2, θ2) which is given by the size
of the adhesion divided by the sound speed in the adhesion.
Accordingly, when a complex that is subject to a shear flow
in a given orientation, Θ , responds elastically and reaches its
equilibrium configuration given by (13) in a timescale that is
shorter than that required to reorient the stress fibers, our model
requires that the shear stresses (force per unit area) on each
adhesion are equal. Using the expression for the force and area,
we find that ω must satisfy the following equation:
√

(1−ω)2λ2 + ρ̂2 − 2(1 − ω)λρ cos(Θ)

A1

=
√

(ω2λ2 + ρ̂2 + 2ωλρ̂ cos(Θ))

A2
, (14)

which, by the first equation in (11) and by (13), implies that the
displacements of the two focal adhesions are equal:

η1 = η2. (15)

The choice of ω so that it satisfies (14) is, here, equivalent to
the basic assumption of equal shear in the two focal adhesions
in a complex.

5. Results and discussion

The solution of (15) can be written in the form

ω = (1 + β cos(Θ) +
√

1 + β2 cos(Θ)2)−1. (16)

This yields the relative area as a function of the orientation
angle for the case where the angle has not yet equilibrated,
but the area has reached mechanical equilibrium. In this
expression, the positive parameter β is given by

β = −λ

ρ̂
= −τ (A1 + A2)

ρ
. (17)

5
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Figure 3. The parameter ω = A2/(A1 + A2) that measures the
relative area in the downstream side focal adhesion versus the flow
orientation angle Θ for different values of β which is inversely
proportional to the cell contractility.

The dependence of ω on β and the orientation angle Θ is
shown in figure 3. The figure shows that, when the shear
imposed by the flow is significantly higher than the magnitude
of the contractility, the area in the downstream focal adhesion
is strongly reduced (and, in the asymptotic limit, tends to zero),
while for zero flow rate the areas of the two focal adhesion in
a complex are equal, as expected.

When ω is given by (16) and the kinematical variables are
in accord with (13), i.e. at their mechanical equilibrium values
for which F̂ attains its global minimum for given values of
ρ̂ < 0, λ and Θ , the dimensionless free energy is equal to F̂eq;
this can be written in the form

F̂eq = −1

2
ρ̂ − ρ̂2

(
1 + β2

2
+

√
1 + β2 cos(Θ)2

)
. (18)

The dependence of F̂eq on β and Θ is shown in figure 4. The
figure clearly shows that the values of F̂ at configurations in
the parallel orientation (Θ = 0) are global minima with no
bifurcation points for all values of β .

Our treatment up to now looked at the mechanical
equilibrium associated with the focal adhesion size and
orientation for an imposed, fixed orientation of the stress fibers
relative to the applied shear. This is applicable when the
timescale associated with focal adhesion growth or shrinkage is
much faster than the time for stress-fiber reorientation. At very
long times, the stress fibers will reorient as well, in response
to the imposed shear. The global equilibrium of the system is
then given by the minimization of F̂eq in (18) with respect to
the orientation angle of the complex, Θ . Equation (18) shows
that the dimensionless free energy, F̂eq, has two extrema at
Θ = 0 and π/2.9 The global minimum of F̂eq is obtained
when the stress fibers are aligned parallel to the direction of
the flow (Θ = 0). The fact that the term that depends on Θ
is proportional to ρ̂2 (where ρ̂ is a measure of the contractile

9 Only at these values of Θ do the forces on the two focal adhesions in a
complex yield a vanishing force couple, i.e. a zero net moment.

Figure 4. The dimensionless free energy at mechanical equilibrium,
F̂eq, as a function of β = −λ/ρ̂ which is inversely proportional to
the contractility force, and the orientation angle of the adhesion
complex relative to the applied shear, Θ , for ρ̂ = −0.5.

force per unit area as given by equation (11)) suggests that
stress fibers in cells with relatively low contractility (i.e. cells
that generate small forces of contraction) may only have a
weak tendency to align with the shear flow. For example, noise
effects due to Brownian motion, fluctuations of the fibers and
other processes might prevent the stress fibers from aligning in
systems with small contractile forces. This was also confirmed
in a more general model using a simple Metropolis Monte
Carlo scheme [26].

An estimate of the order of magnitude of energy
differences between the parallel and perpendicular alignment
of complexes of cells relative to the direction of the imposed
flow can be derived as follows. Following [7, 22] we suppose
that the imposed flow yields a shear stress of the order of
20 dyne cm−2 = 2 × 10−3 nN μm−2. We further estimate
the value of the contractile force in fibroblasts to be of the
order of 10 nN, as suggested in [16]. Using the data reported
in [8] and [16] the total area of all focal adhesions in a cell
is around 4% of the complete cellular area. The shear stress
that deforms the adhesion is given by the shear force divided
by the adhesion area; thus we must divide the average shear
stress of the cell of 20 dyn cm−2 by 0.04 to estimate the
local shear stress on the adhesion. This yields an estimate,
τ ≈ 0.05 nN μm−2, for the flow-induced shear. By taking
the area A1 + A2 to be about 4 μm2 we use (17) and (16) to
get β ≈ 0.02. To estimate the elastic moduli Wi , we follow
an argument given in [20] which gives a lower bound for the
displacement of a typical focal adhesion protein as a result of
active contractility and assume that, in the presence of shear
flow, the displacement of the upper end of a focal adhesion
is of the order of its height, i.e. u1 = u2 ≈ 100 nm. This
yields W1 + W2 ≈ 0.1 nN nm−1. With these values, the energy
difference, �F = ρ2(1 − √

1 + β2)/(W1 + W2), between
the parallel alignment and the perpendicular alignment of a
complex is of the order of −25kBT at T = 310 K. We note
that in the present theory, for a given shear flow, the value
of β characterizing the ratio between the flow-induced shear
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force and the contractile force is inversely proportional to the
fraction of the cellular area that is covered by focal adhesions,
and an increase in this fraction results in a decrease of the
absolute magnitude of the energy difference, �F , because the
local shear stress across a given adhesion is smaller. This
suggests that the orientation of complexes in cells that develop
a large number of focal adhesions would be nearly independent
of Θ . An active increase in the total area A1 + A2 of a
complex for which the relative area of the adhesion, ω, is fixed,
is equivalent to a decrease in ρ̂ and an increase in β . Such
changes correspond to an increased tendency of the complex
to align with the direction of the flow.

The dynamical scenario that we have presented assumed
that the adhesion growth/shrinking kinetics is faster than the
focal adhesion complex reorientation. However, in the case
where the growth or shrinking kinetics are inhibited (and
the areas cannot adjust to the shear) so that there is no
active change in the cross-sectional area of each of the focal
adhesions in a complex (i.e. ω is fixed), F̂eq is found to be
independent of the angle Θ :

F̂eq = −1

2
ρ̂ − 1

2
ρ̂2

(
β2 + 1

(1 − ω)ω

)
. (19)

Equations (18) and (19) suggest that the realignment of
stress fibers parallel to the direction of the flow (Θ = 0) is
indeed driven by the readjustment of the adhesion areas in
response to the shear; in the absence of such readjustment,
there is no driving force to reorient the stress fibers in response
to the applied flow. However, the parallel orientation is
favorable only when the cellular activity equalizes the shear
stress on each of the focal adhesions in a complex so that ω

obeys the relation (16). The dependence of ω on Θ in this
relation is implied by equation (14), which requires that the two
ratios between the total force exerted on each focal adhesion in
a complex and its cross-sectional area are equal.

An experimental validation of the results presented above
can be achieved by investigating the relation between the
contractile strength and the orientational response to shear
flow. A controlled reduction in the magnitude of ρ̂ will then
show the transition from the mechanical regime, characterized
by parallel alignment of stress fibers in response to shear, in
which cellular noise is negligible, to a regime with no preferred
orientation when the magnitude of the contractility, ρ̂, is small.
The dependence of the mechanical equilibrium configurations
on Θ and the strength of the imposed shear can possibly
be verified using cryo-electron microscopy or atomic force
microscopy.

Acknowledgments

We thank the Israel Science Foundation for its support. Part
of this research was supported by the historic generosity of the
Perlman Family Foundation.

References

[1] De R, Zemel A and Safran S A 2007 Dynamics of cell
orientation Nat. Phys. 3 655–9

[2] Hsu H J, Lee C F and Kaunas R 2009 A dynamic stochastic
model of frequency-dependent stress fiber alignment
induced by cyclic stretch PloS ONE 4 e4853:1–847

[3] Brown R A, Prajapati R, McGrouther D A, Yannas I V and
Eastwood M 1998 Tensional homeostasis in dermal
fibroblasts: mechanical responses to mechanical loading in
three-dimensional substrates J. Cell. Physiol. 175 323–32

[4] Biton Y Y and Safran S A 2009 The cellular response to
curvature-induced stress Phys. Biol. 6 046010

[5] Svitkina T M, Rovensky Y A, Bershadsky A D and Vasiliev J M
1995 Transverse pattern of microfilament bundles induced in
epitheliocytes by cylindrical substrata J. Cell Sci. 108
735–45

[6] Levina M E, Domnina L V, Rovensky Y A and Vasiliev J M
1996 Cylindrical substratum induces different patterns of
actin microfilament bundles in nontransformed and in
ras-transformed epitheliocytes Exp. Cell Res. 229 159–65

[7] Owatverot T B, Oswald S J, Chen Y, Wille J J and Yin F C-P
2005 Effect of combined cyclic stretch and fluid shear stress
on endothelial cell morphological responses J. Biomech.
Eng. 127 374–82

[8] Li S, Butler P, Wang Y, Hu Y, Han D C, Usami S, Guan J
L and Chien S 2002 The role of the dynamics of focal
adhesion kinase in the mechanotaxis of endothelial cells
Proc. Natl Acad. Sci. 99 3546–51

[9] Davies P F, Robotewskyj A and Griem L 1994 Quantitative
studies of endothelial cell adhesion: directional remodeling
of focal adhesion sites in response to flow forces J. Clin.
Invest. 93 2031–8

[10] Noria S, Cowan D B, Gotlieb A I and Langille B L 1999
Transient and steady-state effects of shear stress on
endothelial cell adherens junctions Circ. Res. 85 504–14

[11] Bresnick A R 1999 Molecular mechanisms of nonmuscle
myosin-ii regulation Curr. Opin. Cell Biol. 11 26–33

[12] Nicolas A, Geiger B and Safran S A 2004 Cell
mechanosensitivity controls the anisotropy of focal
adhesions Proc. Natl Acad. Sci. USA 101 12520–5

[13] Shemesh T, Geiger B, Bershadsky A D and Kozlov M M 2005
Focal adhesions as mechanosensors: a physical mechanism
Proc. Natl Acad. Sci. USA 102 12383–8

[14] Besser A and Safran S A 2006 Force-induced adsorption and
anisotropic growth of focal adhesions Biophys. J.
90 3469–84

[15] Deshpande V S, Mrksich M, McMeeking R M and Evans A
G 2008 A bio-mechanical model for coupling cell
contractility with focal adhesion formation J. Mech. Phys.
Solids 56 1484–510

[16] Balaban N Q, Schwarz U S, Riveline D, Goichberg P, Tzur G,
Sabanay I, Mahalu D, Safran S A, Bershadsky A D,
Addadi L and Geiger B 2001 Force and focal adhesion
assembly: a close relationship studied using elastic
micropatterned substrates Nat. Cell Biol. 3 466–72

[17] Tan J L, Tien J, Pirone D M, Gray D S, Bhadriraju K and
Chen C S 2003 Cells lying on a bed of microneedles: an
approach to isolate mechanical force Proc. Natl Acad. Sci.
USA 100 1484–9

[18] Raz-Ben Aroush D and Wagner H D 2006 Shear-stress profile
along a cell focal adhesion Adv. Mater. 18 1537–40

[19] Raz-Ben Aroush D, Zaidel-Bar R, Bershadsky A D and
Wagner H D 2008 Temporal evolution of cell focal
adhesions: experimental observations and shear stress
profiles Soft Matter 4 2410–7

[20] Bershadsky A D, Kozlov M M and Geiger B 2006
Adhesion-mediated mechanosensitivity: a time to
experiment, and a time to theorize Curr. Opin. Cell Biol.
18 472–81

[21] Bershadsky A D, Balaban N Q and Geiger B 2003
Adhesion-dependent cell mechanosensitivity Annu. Rev. Cell
Dev. Biol. 19 677–95

7

http://dx.doi.org/10.1038/nphys680
http://dx.doi.org/10.1371/journal.pone.0004853
http://dx.doi.org/10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6
http://dx.doi.org/10.1088/1478-3975/6/4/046010
http://dx.doi.org/10.1006/excr.1996.0354
http://dx.doi.org/10.1115/1.1894180
http://dx.doi.org/10.1073/pnas.052018099
http://dx.doi.org/10.1172/JCI117197
http://dx.doi.org/10.1016/S0955-0674(99)80004-0
http://dx.doi.org/10.1073/pnas.0403539101
http://dx.doi.org/10.1073/pnas.0500254102
http://dx.doi.org/10.1529/biophysj.105.074377
http://dx.doi.org/10.1016/j.jmps.2007.08.006
http://dx.doi.org/10.1038/35074532
http://dx.doi.org/10.1073/pnas.0235407100
http://dx.doi.org/10.1002/adma.200600372
http://dx.doi.org/10.1039/b804643n
http://dx.doi.org/10.1016/j.ceb.2006.08.012
http://dx.doi.org/10.1146/annurev.cellbio.19.111301.153011


J. Phys.: Condens. Matter 22 (2010) 194111 Y Y Biton and S A Safran

[22] Zaidel-Bar R, Kam Z and Geiger B 2005 Polarized
downregulation of the paxillin-p130cas-rac1
pathway induced by shear flow J. Cell Sci.
118 3997–4007

[23] Thompson J M T and Hunt G W 1973 A General Theory of
Elastic Stability (London: Wiley)

[24] Landau L D and Lifshitz E M 1970 Theory of Elasticity
(Oxford: Pergamon)

[25] Love A E H 1927 A Treatise on the Mathematical Theory of
Elasticity (New York: Dover)

[26] Metropolis N, Rosenbluth A W, Rosenbluth M N,
Teller A H and Teller E 1953 Equation of state calculations
by fast computing machines J. Chem. Phys. 21 1087–92

8

http://dx.doi.org/10.1242/jcs.02523
http://dx.doi.org/10.1063/1.1699114

	1. Introduction
	2. Basic assumptions
	3. Kinematics and theory
	4. Free energy and mechanical equilibrium
	5. Results and discussion
	Acknowledgments
	References

